以TC4鈦合金板帶為研究對象,重點對其高溫下的強度和熱導率以及表面氧化皮等進行試驗研究和分析.TC4鈦合金的屈服強度和抗拉強度以及屈強比均隨溫度的升高而降低.所測合金的比熱容范圍為0.61~1.14 J/(kg?K),熱輻射系數(shù)為0.58.TC4合金表面氧化缺陷層主要由外側含氧量較高的氧化皮和內側的富氧層組成.隨加熱溫度的升高和保溫時間的延長,富氧層會向合金基體延伸使其氧化層厚度增加.在較高的應變速率和較低的變形溫度下,TC4合金的變形抗力增加明顯.應力應變曲線隨應變速率的降低由加工硬化型向動態(tài)再結晶型轉變,變形溫度越高其發(fā)生動態(tài)再結晶的臨界變形量越小。
金屬鈦具有輕質、高強度、耐腐蝕和高溫性能好等優(yōu)點,具有重要的應用價值和廣闊的應用前景,因而被稱為“第三金屬”和“21世紀的金屬”[1-2].
板帶材是鈦加工材的主要產品,占鈦加工材消費量的60%以上,主要應用于國防、軍工、航空航天、石油化工、制鹽制堿、冶金、船舶制造、海濱電站及醫(yī)療和體育等行業(yè).隨著經(jīng)濟的發(fā)展和科技的進步,鈦板帶材的市場需求量也在快速提高,這給鈦板帶加工技術與裝備的發(fā)展帶來了機遇,但同時也對產品的力學性能、尺寸公差、表面質量和使用性價比等提出了更高的要求[3-8].
相比于鋼鐵、銅、鋁等金屬板帶材,鈦板帶材屬應用領域高端和發(fā)展前景看好的新型高強度、輕質材料,但其生產技術要求高、工藝難度大,這尤其體現(xiàn)在熱軋變形抗力高、加工硬化程度大、熱變形溫度范圍窄等方面。
(1) 鈦的晶體結構為hcp(密排六方),力學性能呈現(xiàn)出顯著的各向異性,常溫下僅有3個滑移面(基面、棱錐面、棱柱面)和1個滑移方向(鈦有兩種同質異晶體:882 ℃以下為hcp結構的α鈦,882 ℃以上為bcc(體心立方)結構的β鈦)。
(2) 鈦在高溫下與氧親和力強,氧元素不斷向基體擴散,在鈦內部形成硬脆?櫻?使其塑性降低.另外,在還原性氣氛中加熱時,鈦的吸氫效應特別強烈,該效應會使氫擴散到金屬內部,降低其塑性[9-11]。
由于以上原因,鈦板帶材的熱軋工藝和熱軋機等加工設備需要針對其特性進行專門的開發(fā)和設計,而設計必須依據(jù)準確的材料性能參數(shù)等數(shù)據(jù),如鈦在不同溫度和應變速率下的屈服強度、高溫下的熱導率、熱輻射系數(shù)、表面氧化皮的化學成分及厚度、應力應變曲線特征等。
1、試驗材料與方案
1.1、試驗材料
試驗材料選擇某企業(yè)生產的TC4鈦合金鍛打坯料,其化學成分見表1.相比于工業(yè)純鈦,TC4鈦合金的成分為Ti6Al4V,屬于(α+β)型鈦合金[12-13],具有良好的綜合力學性能,在鈦合金品種中的應用最廣泛,產品的市場需求量也最大。
1.2、試驗方案
TC4鈦合金的高溫力學性能主要包括不同溫度條件下的屈服強度σs、抗拉強度σb、伸長率δ5、比熱值、熱導率、熱輻射系數(shù)等,以及在不同溫度和應變條件下的應力應變曲線特征.根據(jù)試驗要求分別制作所需試樣后,在700~1 100 ℃溫度下,對TC4合金進行拉伸、溫降等試驗.同時,制作熱模擬試樣,在700~1 100 ℃、工程應變20%以及1,5,10,30和50 s-1的應變速率下,進行熱力模擬試驗.
另外,對厚度為8 mm的熱軋板以及熱軋后再進行退火的TC4合金板材分別進行表面氧化皮成分和厚度的試驗測定和分析.
2、高溫力學參數(shù)
溫度分別為700,800,900,1 000和1 100 ℃條件下的TC4鈦合金的應力應變曲線如圖1所示.
TC4鈦合金的屈服強度、抗拉強度和伸長率等高溫力學性能的測試結果見表2.
從圖1和表2中可以看出,TC4鈦合金的屈服強度σs和抗拉強度σb均隨溫度的升高而降低.溫度在700~1 100 ℃時,TC4鈦合金的屈強比分別為0.85,0.64,0.45,0.48,0.43,屈強比大致隨溫度的升高而降低.當溫度為900 ℃時,TC4鈦合金的伸長率達到最大值,為470%,此時對應的屈服強度σs和抗拉強度σb分別為10 MPa,22 MPa.TC4鈦合金的伸長率在700 ℃和1 000 ℃時相對較低,最低值為95%.
在700 ℃出現(xiàn)伸長率較低的原因是,溫度較低時,TC4鈦合金沒有達到動態(tài)再結晶的溫度,動態(tài)再結晶不能進行,也無法獲得細小等軸的晶粒組織.同時,TC4鈦合金在此溫度下很難發(fā)生αβ的相轉變.TC4鈦合金的α相為hcp結構,β相是bcc結構,hcp結構的滑移系少于bcc結構的滑移系.因此,hcp結構合金的塑性成形能力較差,伸長率低.當溫度為1 000 ℃時,TC4鈦合金在變形過程中雖然達到了動態(tài)再結晶的溫度,但由于變形溫度較高,TC4鈦合金試樣在拉伸過程中其動態(tài)再結晶晶粒迅速長大,組織和晶粒粗化嚴重,造成其塑性成形能力較低。
對TC4鈦合金鍛坯取樣,進行溫降試驗,試樣規(guī)格為8 mm×100 mm×200 mm.在溫度為380.2~1 232.6 K時,TC4鈦合金的比熱容為0.61~1.14 J/(kg?K).其中在380.2~1 160.7 K時,TC4鈦合金的比熱容隨溫度的升高而增大;在1 160.7~1 232.6 K時,比熱容隨溫度的升高而降低.
另外,在溫度為429.6~1 378.8 K時,TC4鈦合金的熱導率為5.8~19.7 W/(m?K),且隨著溫度的升高而持續(xù)增大.所測得的TC4鈦合金的熱輻射系數(shù)為0.58.
3、表面氧化皮分析
對TC4鈦合金坯料進行軋制試驗,進而對其表面氧化皮的成分和厚度進行分析.試樣在960 ℃進行始軋,終軋溫度為480 ℃,軋制總壓下率為95.6%.對8 mm厚的熱軋板進行750 ℃×1.5 h退火.分別對TC4鈦合金軋制板和熱軋后的退火板進行試驗分析,其表面生成的氧化皮形貌的SEM照片如圖2所示. 經(jīng)測定,圖2(a)中TC4鈦合金熱軋板的表面氧化皮厚度為15.9 μm;圖2(b)中經(jīng)熱軋和退火后的板材表面氧化皮厚度為17.5 μm.分別進行能譜分析可知,兩者氧化皮中主要含C,N,O,Al,Ti等元素,具體的化學元素及其質量分數(shù)見表3.
對各元素進行線掃描,并結合金屬和非金屬元素的相圖進行分析,TC4鈦合金表面氧化物主要為TiO2,TiO,Al2O3,同時也含有少量的Ti2O,Ti3O,Ti6O等低價鈦的氧化物.TC4鈦合金表面氧化層的組成示意圖見圖3.
與鋼鐵、銅板帶等金屬相似,TC4鈦合金加熱后的氧化缺陷層主要由兩部分構成:外側含氧量較高的氧化皮,以及基體與表面氧化皮之間的富氧層.由于TC4鈦合金板坯外表面直接受到熱源輻射,且完全處于含氧氣氛中,因而其表面氧化皮中氧原子與金屬原子的數(shù)量比達1~2.Al2O3相比TiO2,致密性更好,能夠較好地阻擋氧向內層擴散和滲透,因而富氧層中,氧原子與金屬原子的數(shù)量比。
相關鏈接
- 2021-12-29 利泰金屬談鈦合金在航天領域的應用需求
- 2021-12-27 航空用鈦合金鍛件的新工藝方法
- 2021-12-24 TA15鈦板生產廠家談鈦及鈦合金焊接工藝與特性
- 2021-12-21 鎳鈦絲鈦合金板在口腔正畸臨床中的應用
- 2021-12-19 航空用TC11鈦合金棒組織均勻性控制方法
- 2021-12-18 半球形TC4鈦合金鍛件存在的缺陷與生產工藝改進方法
- 2021-12-17 鈦合金葉輪生產廠家介紹新型高強高韌性鈦合金主要有哪些?
- 2021-12-15 航空航天領域用鈦鍛件鈦棒等鈦合金的特點及類型
- 2021-12-09 退火溫度對GR9鈦合金棒材組織及性能的影響
- 2021-12-07 我國鈦棒鈦板等鈦合金產業(yè)發(fā)展的現(xiàn)狀與展望